

CSR Harmonisation

Loads

Industry Presentation

September 2012

Philippe Baumans & Åge Bøe Project Management Team (PMT)

IACS

CSR-H loads: content

- Scheme of CSR-H loads
- Generation of loads
- Rule loads
 - Extreme
 - Fatigue

Scheme of CSR-H loads

Principles

- Scatter diagram
 North Atlantic
- Envelope of hull girder loads
- Principle of Equivalent Design Wave (EDW)

September 2012

Safer and Cleaner Shipping

CSR-H Loads

3

IACS

Generation of loads

- Wave data and ship speed in direct computations
- Equivalent design wave approach
- Definition of equivalent design wave (EDW)
 - Hull girder & acceleration
 - Pressure
 - Selection & validation

Wave data and ship speed

- Wave data: Re-examination of wave data:
 - Recommend not to revise the IACS Rec. 34 scatter diagram
 - Uncertainties which influence accuracy of climate model's simulations and projections.
 - Predictions given by new metocean databases need further investigations.
 - Consensus not reached about the probability of occurrence of rogue waves
 - IACS Rec.34 has been used in direct computations

- 5 knots for extreme conditions
 = minimum speed to maintain
 manoeuvring and other operations
- 3/4 V_{design} for fatigue load computations
 = average speed in 25 years

September 2012

Safer and Cleaner Shipping

CSR-H Loads

5

IACS

Definition of an Equivalent Design Wave (EDW)

- EDW approach HOW
 - Hydrodynamic analysis -> load RAO (Response Amplitude Operator)
 - Spectral analysis
 Long Term value of each load at 10-X
 - Determine (T_0, β_0) from the **maximum of** load RAO
 - Determine A₀ by the ratio

$A_0 = LT \text{ value at } 10^{-X} / RAO(T_0, \beta_0)$

- Regular wave (A_0, T_0, β_0) is called EDW
- Which produces the same load of Long Term value
- At 10-X
- Each load component has an EDW
- Commonly accepted method for calculating the loads

Hull girder loads and accelerations of EDW

- **Hull girder loads** = Load Combination Factor × Load envelope value
 - Load envelope given by Rule formulae: M_{wv}, M_{wh}, Q_{wv}, ...
 - LCFs are defined for each EDW

Load component		LCF OST-1P		OST-2P	OST-1S	0ST-2S	OSA-1P	OSA-2P	OSA-1S	OSA-2S	
Hull girder loads	M _{WV}	C _{WV}	- 0.3 - 0.2f _T	$0.3 + 0.2f_T$	- 0.3 - 0.2f _T	$0.3 + 0.2f_T$	0.75 - 0.5f _T	$-0.75 + 0.5f_T$	0.75 - 0.5f _T	- 0.75 + 0.5f _T	
	Qwv	C_{QW}	$(-0.35-0.2f_T) f_{ip}$	$(0.35+0.2f_T) f_{ip}$	(-0.35-0.2f _T) f _{lp}	(0.35+0.2f _T) f _{ip}	$(0.6-0.4f_T) f_{lp}$	$(-0.6 + 0.4 f_T) f_{ip}$	$(0.6-0.4f_T) f_{lp}$	$(-0.6+0.4f_{T}) f_{lp}$	
	M _{WH}	C _{WH}	- 0.9	0.9	0.9	- 0.9	0.55 + 0.2f _T	- 0.55 - 0.2f _T	- 0.55 - 0.2f _T	$0.55 + 0.2f_T$	
	M _{WT}	C _{WT}	- f _{Ip-OST}	f _{lp-OST}	f _{Ip-OST}	- f _{ip-OST}	- f _{Ip-OSA}	f _{ip-OSA}	f _{Ip-OSA}	-f _{lp-OSA}	

- Accelerations = Load Combination Factor × Ship elementary acceleration
 - Acceleration at ship CoG given by rule formulae: $a_{surge'}$, $a_{sway'}$, $a_{heave'}$, $a_{roll, ...}$
 - LCFs are defined for each EDW
 - Accelerations at any position (a_X, a_Y, a_Z) are defined by the position coordinates and global accelerations at ship CoG. For example:

$$a_z = C_{ZH} \ a_{heave} + C_{ZR} \ a_{roll} \ y - C_{ZP} \ a_{pitch} \ (x - 0.45L)$$

September 2012

Safer and Cleaner Shipping

CSR-H Loads

7

IACS

Sea pressure of EDW

- Pressure distribution given explicitly for each EDW
 - Transverse distribution
 - Pressure points : waterline, bilge, centreline, weather and lee sides
 - Linear interpolation in (y,z)

- Longitudinal distribution
 - Amplitude and phase distribution along the ship
 - Pressure points: 12 points at waterline, bilge, centreline, weather and lee sides
 - Linear interpolation between different zone (x/L)

IACS

Selection of EDW and validation

- EDW approach SELECTION
 - Two FE model used: OT and BC
 - 38 EDWs have been examined
 - Critical EDW selected by the relevance ratio

$$C = \frac{\sigma_{EDW}}{\sigma_{LT\ value}}$$

- Selection of EDWs which produce maximum stress
- EDW approach VALIDATION
 - Only 5+2 winners
 - Comparison results using selected EDWs and Direct computations

September 2012

Safer and Cleaner Shipping

CSR-H Loads

(

IACS

Rule loads

- Extreme loads
 - Rule dynamic load cases
 - Improvements
- Fatigue loads
 - Way to develop fatigue loads
 - Validation of EDW approach
 - Rule dynamic load cases
 - Improvements

Rule dynamic load cases for extreme loads

7 selected EDWs for extreme

loads at 10⁻⁸ level as dynamic load cases HSM: head sea EDW maximizing VBM amidships OST FSM: following sea EDW maximizing VBM amidships (occurring with **OSA** BSP BSR zero vertical acceleration at midship) **FSM HSM** BSR: beam sea EDW maximizing roll motion BSP: beam sea EDW maximizing FP AP Midship waterline pressure at amidships OST: oblique sea EDW maximizing **OSA** torsional moment at 1/4L HSA: head sea EDW maximizing A_z at OSA: oblique sea EDW maximizing

September 2012

Safer and Cleaner Shipping

CSR-H Loads

pitch acceleration (to cover some particular cases and open to ships other than OT/BC)

11

Improvements for extreme loads

- Load case accelerations
 - Accelerations (a_X, a_Y, a_Z) are defined by the position coordinates and global accelerations at ship CoG, with LCF associated with each load case;
 - Consistent variations along the ship and across the section.
- Load case external pressures
 - External pressure distributions are derived from direct computations for each load case.
 - Continuous variations along the ship and around ship section.
- Envelope values of accelerations and external pressures
 - As a reference, the envelope value of accelerations is defined as in CSR-OT.

Way to develop fatigue load in CSR-H

 Consider a SN curve with a typical change of slope at 10⁷ cycles, we obtain the (density and accumulated) contribution of stress range in function of different probability levels

IACS

Selection of probability level - 1

- CSR-OT/CSR-BC approach:
 - Define the loads at 10⁻⁴
 - Associate with Weibull shape parameter to generate a long term distribution

Selection of probability level - 2

- Alternative approach:
 - Define the loads at 10⁻²: seems to be much less sensitive to the Weibull shape parameter.

September 2012

Safer and Cleaner Shipping

CSR-H Loads

15

IACS

Shape parameter sensitivity

- There are two possibilities regarding the choice of the probability level of the EDWs:
 - 10^{-2} : with a constant ξ value (ξ = 1)
 - 10^{-4} : with a variable ξ value as in CSR-OT

September 2012

Validation of EDW approach for fatigue loads

- Damage evaluated based the EDW value at 10^{-2} , the number of cycle of the EDW in 25 years and shape factor = 1.0
 - Reference loads different but the most contributive range of probability remain the same
- Comparison with direct computations

September 2012

Safer and Cleaner Shipping

CSR-H Loads

17

IACS

Rule dynamic load cases for fatigue

 5 selected EDWs at 10⁻² level as dynamic load cases for fatigue:

HSM: head sea EDW maximizing VBM amidships

HSA: head sea EDW maximizing A_z at I

FSM: following sea EDW maximizing VBM amidships

BSR: beam sea EDW maximizing roll motion

 BSP: beam sea EDW maximizing waterline pressure at amidships

 OST: oblique sea EDW maximizing torsional moment at ¼L

OSA: oblique sea EDW maximizing pitch acceleration

HSA and OSA are covered by HSM

Improvements for fatigue loads

- Improvement
 - Probability level at 10⁻²
 - Shape parameter independent (taken as 1.0)
- Gaps filled
 - Reduction factor evaluated for each load components of EDW in which speed effect is considered

$$f_p = \frac{\text{LT value at } 10^{-2} \text{ with } 3/4 V_{design}}{\text{LT value at } 10^{-8} \text{ with } V = 5}$$

- External pressure loads
- Extrapolation height over the waterline
- Damage
 - Stress range computed for each dynamic load case
 - Damage corresponds to the highest damage evaluated from dynamic load cases

September 2012

Safer and Cleaner Shipping

CSR-H Loads

10

IACS

Conclusions on CSR-H load

- Consistent approach and strong technical background
 - EDW re-analysed,
 - Acceleration defined by the combination from 6 acceleration components at ship CoG,
 - Pressure load distribution associated with each EDW,
 - 53 BC and 51 OT used in direct computations
 - Convergent results obtained from different CS and different methods

Exemples of BC

	Lpp	В	D	٧	Full I	nomo. I	oading	cond.	Partial loading cond.				Normal ballast cond.			
No.					d	Св	GM/B	KG/D	d	Св	GM/B	KG/D	d	Св	GM/B	KG/D
	m	m	m	kont	m	-		-	m	-		-	m	-		-
1	107	20.0	10.4	13.5	8.0	0.75	0.09	0.62	-	-	-	-	4.54	0.69	0.14	0.60
2	127	21.0	10.8	12.0	8.1	0.80	0.10	0.61	-	-	-	-	4.38	0.75	0.23	0.55
3	138	22.0	12.2	14.0	9.4	0.78	0.07	0.61	-			-	5.15	0.74	0.11	0.60
4	148	22.0	13.1	14.4	9.5	0.78	0.08	0.61					5.34	0.72	0.12	0.59
5	150	25.0	13.6	14.0	10.0	0.79	0.08	0.59					4.93	0.74	0.17	0.56
6	160	27.0	13.6	14.0	9.8	0.79	0.12	0.59	7.65	0.77	0.15	0.58	5.00	0.73	0.26	0.55
7	172	31.0	15.8	14.0	11.2	0.81	0.11	0.57					5.07	0.74	0.30	0.52
8	174	31.0	15.8	14.0	11.0	0.82	0.11	0.58					5.49	0.77	0.27	0.50
9	177	30.0	16.2	14.0	11.0	0.82	0.10	0.59	-	-			6.16	0.79	0.22	0.52
10	181	31.0	16.5	14.5	11.6	0.81	0.10	0.60	-				5.45	0.75	0.28	0.52
11	182	31.0	16.5	14.5	10.7	0.81	0.10	0.57					5.38	0.76	0.27	0.50
12	215	32.0	18.2	13.9	12.4	0.83	0.10	0.56	9.2	0.80	0.14	0.53	6.11	0.76	0.25	0.51
13	217	32.0	19.0	14.8	13.9	0.84	0.09	0.56	-	-			6.05	0.77	0.25	0.48
14	217	32.0	18.3	14.0	12.2	0.83	0.10	0.56					7.75	0.80	0.16	0.52
15	225	38.0	19.9	14.4	13.9	0.83	0.12	0.58	8.8	0.78	0.19	0.57	5.74	0.74	0.38	0.47
16	230	43.0	20.5	14.0	12.6	0.83	0.17	0.56	10.0	0.81	0.22	0.53	7.82	0.80	0.32	0.44
17	260	43.0	24.0	14.2	17.6	0.84	0.10	0.57	12.8	0.82	0.12	0.55	7.66	0.78	0.27	0.50
18	278	45.0	24.0	14.7	17.7	0.84	0.12	0.55	13.0	0.82	0.16	0.50	7.64	0.79	0.31	0.45
19	278	46.0	23.3	14.7	17.2	0.85	0.13	0.56	13.2	0.83	0.17	0.55	7.30	0.78	0.36	0.48
20	280	46.0	25.0	16.0	18.4	0.85	0.11	0.57	12.8	0.82	0.20	0.47	7.76	0.76	0.32	0.48
21	285	48.0	25.0	12.8	17.9	0.82	0.11	0.56	-				7.34	0.77	0.36	0.41
22	285	50.0	26.7	14.6	19.6	0.83	0.12	0.56	16.4	0.81	0.16	0.50	8.13	0.75	0.32	0.50

Exemples of OT

	Lpp	В	D	v	Full loading cond.				Pai	rtial loa	ding co	nd.	Normal ballast cond.			
No.			ь		d	Св	GM/B H	KG/D	d	Св	GM/B	KG/D	d	Св	GM/B	KG/D
	m	m	m	kont	m	-	-	-	m	-	-	-	m	-	-	
1	110	20.0	11.2	13.0	8.8	0.75	0.09	0.60		-	-	-	4.4	0.68	0.17	0.54
2	130	23.0	12.0	14.0	9.0	0.78	0.11	0.57	-	-	-	-	4.2	0.72	0.24	0.50
3	143	25.0	12.5	15.0	9.5	0.78	0.08	0.64		-	-	-	5.2	0.72	0.16	0.54
4	145	25.0	13.0	13.0	8.5	0.77	0.12	0.54	5.5	0.74	0.18	0.56	5.3	0.74	0.18	0.57
5	160	30.0	16.5	14.0	11.0	0.82	0.12	0.53	7.9	0.81	0.18	0.47	5.4	0.79	0.24	0.44
6	165	28.0	16.0	15.0	10.0	0.83	0.08	0.57	7.6	0.81	0.13	0.52	6.2	0.74	0.25	0.44
7	170	28.0	16.5	15.0	11.0	0.80	0.09	0.56	7.3	0.76	0.10	0.58	6.2	0.77	0.12	0.61
8	172	32.0	19.0	15.5	12.5	0.78	0.08	0.57	10.1	0.76	0.10	0.53	6.2	0.78	0.19	0.46
9	180	28.0	15.0	15.0	11.0	0.82	0.11	0.53		-			6.3	0.75	0.23	0.42
10	194	38.0	18.5	14.0	11.5	0.80	0.14	0.59	7.6	0.77	0.24	0.53	6.3	0.74	0.30	0.43
11	200	36.0	19.0	15.0	12.0	0.79	0.14	0.52	9.5	0.77	0.17	0.50	6.5	0.78	0.24	0.53
12	210	32.0	20.0	14.0	12.5	0.83	0.12	0.48	9.6	0.80	0.18	0.41	6.7	0.75	0.24	0.45
13	215	32.0	20.5	14.0	12.5	0.82	0.08	0.52	8.8	0.79	0.10	0.52	6.8	0.77	0.15	0.53
14	220	42.0	20.2	14.0	14.0	0.82	0.15	0.58	10.5	0.79	0.21	0.53	6.8	0.77	0.52	0.41
15	220	42.0	20.2	14.0	14.0	0.82	0.15	0.58	11.0	0.80	0.17	0.59	6.8	0.75	0.41	0.43
16	230	42.0	20.5	14.0	13.6	0.81	0.16	0.53	10.3	0.79	0.20	0.52	7.2	0.76	0.28	0.56
17	230	42.0	21.0	15.0	14.8	0.82	0.13	0.58	11.1	0.79	0.18	0.52	7.5	0.76	0.30	0.46
18	235	42.0	19.5	14.0	13.5	0.82	0.17	0.52	9.3	0.79	0.23	0.53	7.6	0.74	0.34	0.51
19	235	42.0	21.0	14.5	14.8	0.83	0.13	0.58	11.2	0.81	0.19	0.50	7.7	0.76	0.31	0.43
20	260	45.0	22.5	15.5	17.2	0.81	0.12	0.57	11.9	0.78	0.18	0.50	8.1	0.78	0.23	0.68
21	305	55.0	29.0	14.0	19.5	0.81	0.14	0.52	14.1	0.79	0.17	0.52	8.5	0.72	0.31	0.53
22	310	58.0	28.5	15.5	19.0	0.78	0.16	0.53	13.7	0.75	0.23	0.48	8.6	0.75	0.36	0.50
23	315	59.0	30.5	14.5	21.0	0.79	0.15	0.53	12.4	0.73	0.24	0.53	8.8	0.69	0.40	0.46
24	318	60.0	28.5	16.5	19.5	0.81	0.15	0.57	14.5	0.78	0.20	0.56	9.0	0.71	0.37	0.42
25	320	60.0	28.5	15.5	19.0	0.79	0.15	0.56	14.9	0.77	0.19	0.56	9.0	0.75	0.43	0.31
26	320	60.0	29.0	16.0	20.5	0.81	0.15	0.56	15.5	0.79	0.19	0.53	9.0	0.73	0.42	0.37

Thank you for your attention!

September 2012

Safer and Cleaner Shipping

CSR-H Loads

21